
Virtual Music Space
Bader Tayeb Evan Zien Luan Pham Will Ceriale

Abstract
The Virtual Music Space provides a new way to
experience music that involves the user with more than
their sense of sound. With the Oculus Rift, our virtual
reality application will allow someone to visualize as
well as interact with any music of their choice.
Currently on the market, there are no music visualizers
that take advantage of the Oculus Touch, and they do
not allow users to really immerse themselves in the
music through interaction. Our music visualizer solves
this problem and allows the user to interact fully with
their music with the ability to move around objects
and play with sound locations. This is useful to
someone because people get to really immerse and
enjoy their music to a new level. The Virtual Music
Space solves the problem all current music visualizers
face on the market, and it allows people to be more
engaged with their music.

1 - Introduction
Music visualizers have been existed for a while and
are not abundant in today’s world. Unfortunately, most
of these music visualizers are only 2D and do not
really immerse the user in the music. The rise of
virtual reality creates the opportunity for music
visualizers to exist 3D space. Currently on the market,
most music visualizers do not give the user the
opportunity to interact or move within their
environment.

Our goal is to explore the idea of connecting the
interaction between music, objects, and the user. We
used the virtual reality headset, the Oculus Rift, and its
controllers, the Oculus Touch, to carry out this goal.

2 - Solution
Our solution to this issue is Virtual Music Space. A
3D music visualizer where the user is able to freely
float in space and interact with any of the objects and
even creating new ones. Virtual music space

application is developed using Unity 2017.2.0. All
scripts are written using C#.

Figure 1: Left: Controller Input Mapping. Right: Interaction
Between Major Components.

2.1 - Design
Virtual Music Space contains several interacting major
components (Figure 1 Right). Input signal from
wireless controller is interpreted and attached to
corresponding event handlings. Motion type signal is
sent to Motion Controller to interpret user actions.
Audio control type signal is sent to Audio Controller
to give access to music resources and performs user
designated tasks on music playlist. Audio Spectrum
Processing converts input signal to frequency domain,
which in turn allows VR Object Controller to set
object movements. Scene control type signal is sent to
Scene Controller to give access/control to images
resources.

2.2 - Component & Implementation
2.2.1 - Input Controller:
Describe: Wireless controller allows user to
grab/move objects, trigger menu buttons and control
data resources. It is one of the main input signals in
our VR application.

Implementation: In order to maximize user
experience, especially in VR environment setting. It is
important for user to visual their hands and
movements in real-time. We tackle this problem using
Oculus Avatar SDK to render both hand controllers at
run-time.

Figure 2: Left: Grab/Rotate/Move object using pointer. Right:
Predefined collider detects a ray hit event.

2.2.2 - Input Interpreter:
Describe: ​Input interpreter is the mapping between
input keys and event handlings (Figure 1 Left).

Implementation: ​Unity has a very nice feature that
allows user to map majority input keys to event
handlings. Within each event handling, we can define
scripts to perform designated tasks. The only
exceptions are thumbstick, index and hand trigger.
Since we do not have a direct map on those buttons,
we utilize Oculus Avatar SDK from Oculus to
implement a separate set of event handlings.

All interactions in our VR application are simulated
using laser pointer. Direction of laser pointer is
obtained from forward vector of right hand controller.
For each object we define a collider ; we indicate a ray
hit on targeted object by changing color of laser
pointer to red (Figure 2 Right). Clicking action is
simulated by the detection of the collider hit by the
forward ray. We incorporate this idea to define
Play/Pause, Volume+/- (Figure 2 Right). On the other,
Grabbing action is triggered during a ray hit event
while user holds the right hand trigger button (Figure 2
Left). Moving object is a process of determine the
distance between object and controller. The result
distance and new forward vector are combined to set
new location of the object. In a similar manner,
rotating/pulling/pushing action is computed using the
difference between current position/angle and previous
position/angle. Result difference is scaled in the
direction forward vector in the case of pulling/pushing
(we update these parameters every single frame).

2.2.3 - Motion Controller:
Describe: ​Motion Controller is the main interface to
control movement in VR environment. ​The user uses
the two thumbsticks to move in space. We used one
thumbstick to move in a 2D plane and the other

thumbstick to change the rotation of the 2D plane in
3D space, giving the user the freedom to move
anywhere inside the space. Movement is very
accessible in this application.

Implementation: ​Movement is implemented using a
simple event handling to adjust position as well as
OVR camera facing direction. We determine the user
positions on the thumbstick trigger and convert it to
the corresponding moving distance and rotation angle
along that axis (we scale both distance and angle by
constants).

2.2.4 - Audio Controller:
Describe: ​Audio Controller is the main interface to
control music playlist. Music can be added in itself by
dragging in music to a folder in the application. Music
songs can be cycled with a button. In addition, user
can experiences spatial audio effects as they move
around the music sources.

Implementation: ​Music files are extracted from data
resources and stored as input array. Index on music
playlist is updated as user triggers a designated
keypress event or when the playlist stops playing (end
of current song). We also integrate an automatic
forward feature using a separate flag variable to keep
track of the playing state of music playlist (this state
variable is independent from the playing state defined
by user).

Each audio source has two major attributes to support
spatial audio effects: volume, radius. The behavior of
these two attribute are integrated inside Unity for VR.
Volume scales linearly to the distance from music
source; whereas, radius defines the effective range for
audio source (sounds of the sun and moon are active
within a predefined radius). The Tree of Life (our
music source) is the music of the music space and you
can hear it differently depending on its location with
respect to you.

2.2.5 - Scene Controller:
Describe: Scene Controller is the main interface to
control background images.

I​mplementation: We use very similar approach to
Audio Controller to keep track of current index on
input array of background images.

2.2.6 - Audio Spectrum Processing:
Describe: Audio Spectrum Processing reads music
input from Audio Controller, performs FFT to
transform time domain to frequency domain.

I​mplementation: Data is obtained by sampling input
audio source and stored as an array (we define a fixed
size array of 512 to store sample data). FFT algorithm
is performed on sample data to obtain corresponding
frequency domain. Having the frequency domain, we
can determine human hearing frequency (8 bands
spanning from 20Hz - 20KHZ) by averaging the
frequency values within each interval. To allow
objects to bounce to the beat, we keep track of highest
frequency for each frequency band on each running
frame. The radio between current frequency and
highest frequency tells how frequency expands or
contracts at a given time frame. Summing all ratio
values of all 8 bands together and update its highest
value at runtime, the ratio should give us how object
react to the music beat.

Figure 3: Left: Bars represent frequency Spectrum (they are scaled
by a constant). Right: Object size is scaled to the amplitude of
frequency.

2.2.7 - VR Objects Controller:
Describe: ​VR Object Controller is the main interface
to read spectrum data from Audio Spectrum
Processing unit and convert these data to
corresponding color coding and object movements.

Implementation: ​For each object we define a function
to obtain updated frequency and amplitude from
Audio Spectrum Processing unit. Objects in the shape
of a cylinder, pill, sphere, and cube can be created and
they alter size based on computed amplitude on each
frame (Figure 3 Right). ​There are also music bars
following the spectrum frequency (Figure 3 Left). We

also try to create lighting & color effect by applying
computed amplitude, frequency to adjust the color of
objects. However, this approach causes a significant
performance degradation (due to re-rendering multiple
objects every single frame); thus, we decide to omit
this feature during the demo.

3 - Related Work
There are two applications in the Oculus Store that
offer immersive music visualisation. These are
“Virtual Music”, and “Audio Visualizer”. Virtual
Music (Figure 4 Right) is a music visualizer that had
good static designs that reacted with music but lacked
a clear interaction with the user. The user could not
pick the music being played, nor could he/she move or
interact with the space. Similarly, Audio Visualizer
(Figure 4 Left) had the same problems with lack of
interaction. Audio Visualizer included more moving
visualizations, but it still could not fully engage the
user with interactions with the music. Audio
Visualizer only had visuals on a 2-D plane and was
only a visual for the user. Both of these apps take
advantage of the Oculus Rift and place the user in a
fully immersive space where objects react to music. A
key difference between our project and the ones that
existed previously is the level of immersion. In our
application, one is able to move objects, spawn objects
and completely move around the world, where in
previous application movement was limited, as well as
object interaction.

Figure 4: Left: Entire Visualization Space on Audio Visualizer.
Right: Entire Visualization Space on Virtual Music

4 - Conclusion
We were able to create a fully immersive virtual
reality experience through the Oculus Rift and the
Unity Engine that is not in existence on the Oculus
Store. Currently, music visualizers on the market only
have visualizations that follow the pitch and frequency
of the music. Users are only able to view these objects.

While the object look impressive, the users still cannot
make any interactions with them. Our application,
Virtual Music Space, alleviates this void and gives
users full interaction with the objects. Despite
accomplishing a lot this past quarter, this project could
still be expanded in the future. For example the
designs on creating objects can be much better and
give more interactions such as deleting objects or
bumping objects. This project can even expand to
letting people experience live music through an
Oculus because of the interactions. Virtual Music
Space accomplishes our goal of creating a more
immersive music visualizer, and it has potential to
impact a larger scope if carried out further.

5 - Acknowledgements
We would like to thank Peer Play for amazing Audio
Visualization tutorial series on YouTube
(​https://www.youtube.com/channel/UCBkub2TsbCFIf
dhuxRr2Lrw​). These tutorials are super helpful as we
get to learn more about Unity features along the way.
We also would like to thank professor Bruce
HemingWay and TA Tony Tung for giving us helpful
feedbacks, which inspire us to add more amazing
features to our final product.

https://www.youtube.com/channel/UCBkub2TsbCFIfdhuxRr2Lrw
https://www.youtube.com/channel/UCBkub2TsbCFIfdhuxRr2Lrw

